關鍵詞:污水處理運營 污水處理外包 工業污水處理 污水處理第三方運行 工業廢水處理 生活污水處理
膜生物反應器( Membrance Bioreactor Reactor,簡稱MBR)是膜分離與生物處理技術組合而成的廢水生物處理新工藝, 與傳統的生化處理技術相比,MBR具有以下主要特點:處理效率高、出水水質好;設備緊湊、占地面積小;易實現自動控制、運行管理簡單。80年代以來,該技術愈來愈受到重視,成為水處理技術研究的一個熱點。目前,膜生物反應器已應用于美國、德國、法國、日本和埃及等十多個國家,處理規模在6~13000 m3/d。
近兩年來,膜生物反應器在我國國內已進入了實用化階段。 MBR系統的處理對象從生活污水擴展到高濃度有機廢水和難降解工業廢水,如制藥廢水、化工廢水、食品廢水、屠宰廢水、煙草廢水、豆制品廢水、糞便污水、黃泔污水等。從目前的趨勢看,中水回用將是MBR在我國推廣應用的主要方向。表1列舉了MBR在我國的應用實例及處理效果。這些應用實例表明:MBR對生活污水、高濃度有機廢水與難降解工業廢水的處理效果良好。
MBR工藝的組成與分類
膜-生物反應器主要由膜分離組件及生物反應器兩部分組成。通常提到的膜 - 生物反應器實際上是三類反應器的總稱:
① 曝氣膜 - 生物反應器 (Aeration Membrane Bioreactor, AMBR) ;
② 萃取膜 - 生物反應器( Extractive Membrane Bioreactor, EMBR );
③ 固液分離型膜 - 生物反應器( Solid/Liquid Separation Membrane Bioreactor, SLSMBR, 簡稱 MBR )。
曝氣膜-生物反應器
曝氣膜-生物反應器最早見于 Cote.P 等1988年報道,采用透氣性致密膜(如硅橡膠膜)或微孔膜(如疏水性聚合膜),以板式或中空纖維式組件,在保持氣體分壓低于泡點( Bubble Point )情況下,可實現向生物反應器的無泡曝氣。該工藝的特點是提高了接觸時間和傳氧效率,有利于曝氣工藝的控制,不受傳統曝氣中氣泡大小和停留時間的因素的影響。
萃取膜-生物反應器
萃取膜-生物反應器 又稱為 EMBR ( Extractive Membrane Bioreactor )。因為高酸堿度或對生物有毒物質的存在,某些工業廢水不宜采用與微生物直接接觸的方法處理;當廢水中含揮發性有毒物質時,若采用傳統的好氧生物處理過程,污染物容易隨曝氣氣流揮發,發生氣提現象,不僅處理效果很不穩定,還會造成大氣污染。為了解決這些技術難題,英國學者 Livingston 研究開發了 EMB 。
廢水與活性污泥被膜隔開來,廢水在膜內流動,而含某種專性細菌的活性污泥在膜外流動,廢水與微生物不直接接觸,有機污染物可以選擇性透過膜被另一側的微生物降解。由于萃取膜兩側的生物反應器單元和廢水循環單元是各自獨立,各單元水流相互影響不大,生物反應器中營養物質和微生物生存條件不受廢水水質的影響,使水處理效果穩定。系統的運行條件如 HRT 和 SRT 可分別控制在最優的范圍,維持最大的污染物降解速率。
固液分離型膜-生物反應器
固液分離型膜-生物反應器是在水處理領域中研究得最為廣泛深入的一類膜-生物反應器,是一種用膜分離過程取代傳統活性污泥法中二次沉淀池的水處理技術。
在傳統的廢水生物處理技術中,泥水分離是在二沉池中靠重力作用完成的,其分離效率依賴于活性污泥的沉降性能,沉降性越好,泥水分離效率越高。而污泥的沉降性取決于曝氣池的運行狀況,改善污泥沉降性必須嚴格控制曝氣池的操作條件,這限制了該方法的適用范圍。由于二沉池固液分離的要求,曝氣池的污泥不能維持較高濃度,一般在1.5~3.5g/L 左右,從而限制了生化反應速率。水力停留時間(HRT )與污泥齡(SRT )相互依賴,提高容積負荷與降低污泥負荷往往形成矛盾。系統在運行過程中還產生了大量的剩余污泥,其處置費用占污水處理廠運行費用的25% ~40% 。傳統活性污泥處理系統還容易出現污泥膨脹現象,出水中含有懸浮固體,出水水質惡化。針對上述問題, MBR 將分離工程中的膜分離技術與傳統廢水生物處理技術有機結合,大大提高了固液分離效率,并且由于曝氣池中活性污泥濃度的增大和污泥中特效菌 ( 特別是優勢菌群 ) 的出現,提高了生化反應速率。同時,通過降低 F/M 比減少剩余污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的許多突出問題。
根據膜組件和生物反應器的組合方式,又可將膜 - 生物反應器 分為分置式、一體式以及復合式三種基本類型。以下討論的均為固液分離型膜 - 生物反應器。
分置式膜-生物反應器
分置式膜-生物反應器把膜組件和生物反應器分開設置,如圖所示。生物反應器中的混合液經循環泵增壓后打至膜組件的過濾端,在壓力作用下混合液中的液體透過膜,成為系統處理水;固形物、大分子物質等則被膜截留,隨濃縮液回流到生物反應器內。
分置式膜 - 生物反應器的特點是運行穩定可靠,易于膜的清洗、更換及增設;而且膜通量普遍較大。但一般條件下為減少污染物在膜表面的沉積,延長膜的清洗周期,需要用循環泵提供較高的膜面錯流流速,水流循環量大、動力費用高 (Yamamoto, 1989) ,并且泵的高速旋轉產生的剪切力會使某些微生物菌體產生失活現象 ( Brockmann and Seyfried, 1997 ) 。
一體式膜-生物反應器
一體式膜-生物反應器是把膜組件置于生物反應器內部,如圖所示。進水進入膜-生物反應器,其中的大部分污染物被混合液中的活性污泥去除,再在外壓作用下由膜過濾出水。這種形式的膜-生物反應器由于省去了混合液循環系統,并且靠抽吸出水,能耗相對較低;占地較分置式更為緊湊,近年來在水處理領域受到了特別關注。但是一般膜通量相對較低,容易發生膜污染,膜污染后不容易清洗和更換。
復合式膜-生物反應器
復合式膜-生物反應器在形式上也屬于一體式膜-生物反應器,所不同的是在生物反應器內加裝填料,從而形成復合式膜-生物反應器,改變了反應器的某些性狀,如圖所示:
MBR工藝的特點
與許多傳統的生物水處理工藝相比, MBR 具有以下主要特點:
1 出水水質優質穩定
由于膜的高效分離作用,分離效果遠好于傳統沉淀池,處理出水極其清澈, 懸浮物和濁度接近于零,細菌和病毒被大幅去除 ,出水水質優于建設部頒發的生活雜用水水質標準( CJ25.1-89 ),可以直接作為非飲用市政雜用水進行回用。
同時,膜分離也使 微生物被完全被截流在生物反應器內, 使得系統內能夠維持較高的微生物濃度,不但 提高了反應裝置對污染物的整體去除效率,保證了良好的出水水質,同時反應器 對進水負荷(水質及水量)的各種變化具有很好的適應性,耐沖擊負荷,能夠穩定獲得優質的出水水質。
2 剩余污泥產量少
該工藝可以在高容積負荷、低污泥負荷下運行,剩余污泥產量低(理論上可以實現零污泥排放),降低了污泥處理費用。
3 占地面積小,不受設置場合限制
生物反應器內能維持高濃度的微生物量,處理裝置容積負荷高,占地面積大大節省; 該工藝流程簡單、結構緊湊、占地面積省,不受設置場所限制,適合于任何場合,可做成地面式、半地下式和地下式。
4 可去除氨氮及難降解有機物
由于微生物被完全截流在生物反應器內,從而有利于增殖緩慢的微生物如硝化細菌的截留生長,系統硝化效率得以提高。同時,可增長一些難降解的有機物在系統中的水力停留時間,有利于難降解有機物降解效率的提高。
5 操作管理方便,易于實現自動控制
該工藝實現了水力停留時間( HRT )與污泥停留時間( SRT )的完全分離,運行控制更加靈活穩定,是污水處理中容易實現裝備化的新技術,可實現微機自動控制,從而使操作管理更為方便。
6 易于從傳統工藝進行改造
該工藝可以作為傳統污水處理工藝的深度處理單元,在城市二級污水處理廠出水深度處理(從而實現城市污水的大量回用)等領域有著廣闊的應用前景。
7 膜-生物反應器的不足
膜-生物反應器也存在一些不足。主要表現在以下幾個方面:
1膜造價高,使膜 - 生物反應器的基建投資高于傳統污水處理工藝;
2 膜污染容易出現,給操作管理帶來不便;
3 能耗高:首先 MBR 泥水分離過程必須保持一定的膜驅動壓力,其次是 MBR 池中 MLSS 濃度非常高,要保持足夠的傳氧速率,必須加大曝氣強度,還有為了加大膜通量、減輕膜污染,必須增大流速,沖刷膜表面,造成 MBR 的能耗要比傳統的生物處理工藝高。
影響MBR應用的關鍵因素研究
由于膜通量的提高、膜壽命的延長會大幅度降低MBR的運行費用,因此,在保證出水水質的前提下,膜通量應盡可能大,這樣可減少膜的使用面積,降低基建費用與運行費用。因此控制膜污染,保持較高的膜通量,是MBR研究的重要內容。而膜通量與膜材料、操作方式、水力條件等因素密切相關。
轉自武漢格林環保